Search results for "orbit [binary]"

showing 10 items of 37 documents

A penetration depth study on the non-centrosymmetric superconductors Li2(Pd1−xPtx)3B

2008

Abstract We study the superconducting order parameter in the non-centrosymmetric compounds Li 2 (Pd 1− x Pt x ) 3 B ( x =0, 0.3, 0.7 and 1) by measuring magnetic penetration depth λ ( T ). The low temperature λ ( T ) shows a linear temperature dependence for x ⩾0.3, but follows exponential-like behavior for lower Pt contents. These findings suggest that a spin-triplet state might gradually develop with increasing x due to the broken inversion symmetry.

SuperconductivityMaterials scienceSpin statesCondensed matter physicsPoint reflectionSymmetry breakingSpin–orbit interactionElectrical and Electronic EngineeringTriplet stateCondensed Matter PhysicsPenetration depthElectronic Optical and Magnetic MaterialsPhysica B: Condensed Matter
researchProduct

Thickness dependence of anomalous Hall conductivity in L10-FePt thin film

2019

L10 ordered alloys are ideal models for studying the anomalous Hall effect (AHE), which can be used to distinguish the origin from intrinsic (from band structure) or from extrinsic effects (from impurity scatterings). In the bulk limit of L10 ordered FePt films, the AHE is considered to be dominated by the intrinsic contribution, which mainly comes from the strong spin-orbit interaction (SOI) of Pt atoms and exchange-splitting of Fe atoms. The study of anomalous Hall conductivity (AHC) of L10-FePt thin films is of particular interest for its application in spintronic devices. In order to reduce the effects of defects such as grain boundaries, we chose SrTiO3 as the substrate which has a ver…

Materials scienceAcoustics and UltrasonicsPhonon scatteringCondensed matter physicsSpintronics02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHall effect0103 physical sciencesGrain boundaryBerry connection and curvatureThin film010306 general physics0210 nano-technologyElectronic band structureJournal of Physics D: Applied Physics
researchProduct

Understanding the Giant Enhancement of Exchange Interaction in Bi2Se3−EuS Heterostructures

2017

A recent experiment indicated that a ferromagnetic EuS film in contact with a topological insulator ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ might show a largely enhanced Curie temperature and perpendicular magnetic anisotropy [F. Katmis et al., Nature (London) 533, 513 (2016).]. Through systematic density functional calculations, we demonstrate that in addition to the factor that ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$ has a strong spin orbit coupling, the topological surface states are crucial to make these unusual behaviors robust as they hybridize with EuS states and extend rather far into the magnetic layers. The magnetic moments of Eu atoms are nevertheless not much enhanced, unlike what was…

PhysicsCondensed matter physicsMagnetic momentExchange interactionGeneral Physics and AstronomyHeterojunction02 engineering and technologySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesFerromagnetismTopological insulator0103 physical sciencesCurie temperature010306 general physics0210 nano-technologySurface statesPhysical Review Letters
researchProduct

Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons

2018

We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to non-integrability of the system and hints on the possibility of quantum chaos emerging. Such a behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization…

PhysicsCouplingLevel repulsionCondensed Matter - Mesoscale and Nanoscale PhysicsExcitonHYDROGEN-ATOMFOS: Physical sciences02 engineering and technologyElectronSpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesQuantum chaossymbols.namesakeQUANTUM CHAOSGASQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesRydberg formulasymbols010306 general physics0210 nano-technologyRealization (systems)Physical Review B
researchProduct

2017

AbstractThe control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We corre…

EngineeringMultidisciplinarybusiness.industryGeneral Physics and Astronomy02 engineering and technologyGeneral ChemistrySpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesEngineering physicsGeneral Biochemistry Genetics and Molecular BiologyEngineering and Physical SciencesResearch council0103 physical sciences010306 general physics0210 nano-technologybusinessResearch centerSpin-½Nature Communications
researchProduct

Rashba spin-orbit-interaction-based quantum pump in graphene

2012

We present a proposal for an adiabatic quantum pump based on a graphene monolayer patterned by electrostatic gates and operated in the low-energy Dirac regime. The setup under investigation works in the presence of inhomogeneous spin-orbit interactions of intrinsic- and Rashba-type and allows to generate spin polarized coherent current. A local spin polarized current is induced by the pumping mechanism assisted by the spin-double refraction phenomenon.

PhysicsPhysics and Astronomy (miscellaneous)Condensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGrapheneDirac (software)FOS: Physical sciencesPhysics::OpticsSpin–orbit interactionlaw.inventionlawMonolayerMesoscale and Nanoscale Physics (cond-mat.mes-hall)Refraction (sound)Condensed Matter::Strongly Correlated ElectronsAdiabatic processQuantumSpin-½
researchProduct

Double-CO32− Centered [CoII5] Wheel and Modeling of Its Magnetic Properties

2010

A high-spin Co(II) cluster with a rare pentagonal molecular structure and formula [Co(5)(CO(3))(2)(bpp)(5)]ClO(4) (1; Hbpp is 2,6-bis(phenyliminomethyl)-4-methylphenolate) has been synthesized and characterized by single-crystal X-ray diffraction. This topology arises from fusing five [Co(2)(bpp)] moieties in a cyclic manner around two CO(3)(2-) central ligands, resulting in propeller-like configuration. The irregular coordination of the carbonate ions to the metal centers results in a combination of coordination numbers (CNs) of the Co(II) ions of five and six. The bulk magnetization of this complicated magnetically exchanged system has been modeled successfully by employing a matrix diago…

crystal structureCoordination numberInorganic chemistrycarbonatesCatalysisIonCoordination complexMetalMagnetizationCluster (physics)Moleculecarbonate ligandschemistry.chemical_classificationOrganic Chemistrycarbonate ligands; carbonates; cobalt; coordination chemistry; density functional calculations; magnetic properties; spin-orbit coupling; crystal structure.General ChemistrySpin–orbit interactioncobaltspin-orbit couplingCrystallographychemistryvisual_artdensity functional calculationscoordination chemistryvisual_art.visual_art_mediummagnetic propertiesChemistry - A European Journal
researchProduct

The gas-phase chemiionization reaction between samarium and oxygen atoms: A theoretical study

2004

The Sm + O chemiionization reaction has been investigated theoretically using a method that allows for correlation and relativistic effects. Potential energy curves have been calculated for several electronic states of SmO and SmO+. Comparison with available spectroscopic and thermodynamic values for these species is reported and a mechanism for the chemiionization reaction Sm + O is proposed. The importance of spin–orbit coupling in the excited states of SmO, in allowing this chemiionization reaction to take place, has been revealed by these calculations. This paper shows the metal-plus-oxidant chemiionization reaction.

SamariumExcited statesGeneral Physics and Astronomychemistry.chemical_elementRelativistic correctionsPotential energyOxygenOxygenSamariumAtom-atom reactionsOxygen atomchemistryPotential energy surfacesExcited stateIonizationddc:540OxidationSpin-orbit interactionsPhysical and Theoretical ChemistryAtomic physicsRelativistic quantum chemistryChain reactionIonisationThe Journal of Chemical Physics
researchProduct

Closed-shell coupled-cluster theory with spin-orbit coupling

2008

A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelat…

PhysicsCouplingCoupled clusterField (physics)Quantum electrodynamicsGeneral Physics and AstronomyMolecular orbitalPerturbation theory (quantum mechanics)Spin–orbit interactionPhysical and Theoretical ChemistryTriplet stateOpen shellThe Journal of Chemical Physics
researchProduct

Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs

2019

We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the L\"owdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmet…

SuperconductivityPhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciencesGeneral Physics and AstronomyFermi surface02 engineering and technologyElectronSpin–orbit interaction021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)symbols.namesake0103 physical sciencesHomogeneous spacesymbolsGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physics0210 nano-technologyElectronic band structureHamiltonian (quantum mechanics)Electronic propertiesThe European Physical Journal Special Topics
researchProduct